14 Jan

Cartoon: May 25, 2016

first_imgShare this:Click to share on Twitter (Opens in new window)Click to share on Facebook (Opens in new window)last_img

14 Oct

Alberta First Nations react to refinery rejection

first_imgAPTN National NewsOver 47 First Nations in Alberta would have been part of the Alberta First Nations Energy Center, and would have stood to gain a significant amount of income from the $6.6-billion dollar, First Nations-owned bitumen refinery project that was rejected by the Alberta government this week.Many are not happy with the government’s decision, and they share their reactions with APTN National News reporter Noemi LoPinto.last_img

31 Aug

Astronomers discover superEarth planet orbiting nearby star

first_img Explore further Phase folded curve of the planetary signal detected in GJ 625 using the parameters of the MCMC model. Left panel shows the CCF measurements, right panel the TERRA measurements. Grey dots show the measurements after subtracting the detected activity induced signals. Red dots are the same points binned in phase with a bin size of 0.1. The error bar of a given bin is estimated using the weighted standard deviation of binned measurements divided by the square root of the number of measurements included in this bin. Blue line shows the best fit to the data using a Keplerian model. Credit: Mascareño et al., 2017. Scientists discover a nearby superearth This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only. “Super-Earths” are planets more massive than Earth but not exceeding the mass of Neptune. Although the term “super-Earth” refers only to the mass of the planet, it is also used by astronomers to describe planets bigger than Earth but smaller than the so-called “mini-Neptunes” (with a radius between two to four Earth-radii).Located only 21 light years away, GJ 625 is an M-dwarf star (spectral type M2) about 1/3 the size and mass of the sun. Such stars offer great potential in the search for alien Earth-like worlds, as low-mass rocky planets appear to be more frequent around M-dwarfs. However, finding an Earth-like planet orbiting low-mass stars is difficult due to their stellar activity. This is because signals induced by the rotation of a star can easily mimic those of planetary origin. Therefore, the signals coming from M-dwarfs tend to be comparable to those of rocky planets close to the habitable zone of their stars.Recently, a team of astronomers led by Alejandro Suarez Mascareño of the Canary Islands Institute of Astrophysics, has completed challenging studies of GJ 625, which began in 2013 and lasted over three and a half years. The observations were conducted with the High Accuracy Radial velocity Planet Searcher for the Northern hemisphere (HARPS-N) spectrograph installed at the Telescopio Nazionale Galileo at the Roque de los Muchachos Observatory on the island of La Palma, Canary Islands, Spain.The researchers analyzed 151 radial-velocity time series from HARPS-N as part of the HArps-n red Dwarf Exoplanet Survey (HADES) radial velocity program, which resulted in the discovery of a new planet.”We report the discovery of a super-Earth orbiting at the inner edge of the habitable zone of the star GJ 625 based on the analysis of the radial-velocity (RV) time series from the HARPS-N spectrograph, consisting in 151 HARPS-N measurements taken over 3.5 yr,” the paper reads.The newly found alien world, designated GJ 625 b, has a minimum mass of 2.8 Earth masses, which makes it the lightest exoplanet found around an M2 star to date. The planet orbits its host every 14.6 days at a distance of approximately 0.08 AU from the star, which is relatively close. By comparison, Mercury orbits the sun at a mean distance of 0.38 AU. The results of radial velocity measurements allowed the team to conclude that GJ 625 b is a small “super-Earth” on the inner edge of the habitable zone and has a mean surface temperature of 350 K that is very dependent on the atmospheric parameters. Moreover, the researchers assume that the newly detected exoworld might potentially host liquid water, but more observations focused on GJ 625 b’s atmosphere are required to confirm this assumption. (Phys.org)—European astronomers report the detection of a new extrasolar world several times more massive than Earth. The newly found exoplanet, classified as a so-called “super-Earth,” is circling a nearby star designated GJ 625. The researchers detailed their finding in a paper published May 18 on arXiv.org. Citation: Astronomers discover ‘super-Earth’ planet orbiting nearby star (2017, May 29) retrieved 18 August 2019 from https://phys.org/news/2017-05-astronomers-super-earth-planet-orbiting-nearby.html More information: HADES RV Programme with HARPS-N at TNG: V. A super-Earth on the inner edge of the habitable zone of the nearby M-dwarf GJ 625, arXiv:1705.06537 [astro-ph.EP] arxiv.org/abs/1705.06537AbstractWe report the discovery of a super-Earth orbiting at the inner edge of the habitable zone of the star GJ 625 based on the analysis of the radial-velocity (RV) time series from the HARPS-N spectrograph, consisting in 151 HARPS-N measurements taken over 3.5 yr. GJ 625 b is a planet with a minimum mass M sin i of 2.82 ± 0.51 M⊕ with an orbital period of 14.628 ± 0.013 days at a distance of 0.078 AU of its parent star. The host star is the quiet M2 V star GJ 625, located at 6.5 pc from the Sun. We find the presence of a second radial velocity signal in the range 74-85 days that we relate to stellar rotation after analysing the time series of Ca II H&K and Hα spectroscopic indicators, the variations of the FWHM of the CCF and and the APT2 photometric light curves. We find no evidence linking the short period radial velocity signal to any activity proxy. © 2017 Phys.orglast_img read more

26 Aug

How to secure an Azure Virtual Network

first_imgThe most common question that anyone asks when they buy a service is, can it be secured? The answer to that question, in this case, is absolutely yes. In this tutorial, we will learn to secure your connection between virtual machines. On top of the security, Microsoft provides for Azure as a vendor, there are some configurations that you can do at your end to increase the level of security to your virtual network. For a higher level of security, you can use the following: NSG: It is like a firewall that controls the inbound and outbound traffic by specifying which traffic is allowed to flow to/from the NIC/subnet Distributed denial of service (DDoS) protection: It is used to prevent DDoS attacks and at the time of writing is in preview This tutorial is an excerpt from the book, Hands-On Networking with Azure, written by Mohamed Waly. Network Security Groups (NSG) NSG controls the flow of traffic by specifying which traffic is allowed to enter or exit the network. Creating NSG Creating NSG is a pretty straightforward process. To do it, you need to follow these steps: Navigate to Azure portal, and search for network security groups, as shown in the following screenshot: Figure 2.13: Searching for network security groups Once you have clicked on it, a new blade will be opened wherein all the created NSGs are located, as shown in the following screenshot: Figure 2.12: Network security groups blade Click on Add and a new blade will pop up, where you have to specify the following: Name: The name of the NSG Subscription: The subscription, which will be charged for NSG usage Resource group: The resource group within which the NSG will be located as a resource Location: The region where this resource will be created Figure 2.13: Creating an NSG Once you have clicked on Create, the NSG will be created within seconds. Inbound security rules By default, all the subnets and NICs that are not associated with NSG have all the inbound traffic allowed and once they are associated with an NSG, the following inbound security rules are assigned to them as they are a default part of any NSG: AllowVnetInBound: Allows all the inbound traffic that comes from a virtual network AllowAzureLoadBalancerInBound: Allows all the inbound traffic that comes from Load Balancer DenyAllInbound: Denies all the inbound traffic that comes from any source Figure 2.14: Default inbound security rules As shown in the previous screenshot, the rule consists of some properties, such as PRIORITY, NAME, PORT, and so on. It is important to understand what these properties mean for a better understanding of security rules. So, let’s go ahead and explain them: PRIORITY: A number assigned to each rule to specify which rule has a higher priority than the other. The lower the number, the higher the priority. You can specify a priority with any number between 100 and 4096. NAME: The name of the rule. The same name cannot be reused within the same network security group. PORT: The allowed port through which the traffic will flow to the network. PROTOCOL: Specify whether the protocol you are using is TCP or UDP. SOURCE and DESTINATION: The source can be any, an IP address range, or a service tag. You can remove the default rules by clicking on Default rules. You can customize your own inbound rules, by following these steps: On the Inbound security rules blade, click on Add. A new blade will pop up, where you have to specify the following: Source: The source can be Any, an IP address range, or a service tag. It specifies the incoming traffic from a specific source IP address range that will be allowed or denied by this rule. Source port ranges: You can provide a single port, such as 80, a port range, such as 1024 – 65535, or a comma-separated list of single ports and/or port ranges, such as 80, 1024 – 65535. This specifies on which ports traffic will be allowed or denied by this rule. Provide an asterisk (*) to allow traffic on any port. Destination: The destination can be Any, an IP address range, or a virtual network. It specifies the outing traffic to a specific destination IP address range that will be allowed or denied by this rule. Destination port ranges: What applies for the source port ranges, applies for the destination port ranges. Protocol: It can be Any, TCP, or UDP. Action: Whether to Allow the rule or to Deny it. Priority: As mentioned earlier, the lower the number, the higher the priority. The priority number must be between 100 – 4096. Name: The name of the rule. Description: The description of the rule, which will help you to differentiate between the rules. In our scenario, I want to allow all the incoming connections to access a website published on a web server located in a virtual network, as shown in the following screenshot: Figure 2.15: Creating an inbound security rule Once you click on OK, the rule will be created. Outbound security rules Outbound security rules are no different than inbound security rules, except inbound rules are meant for inbound traffic and outbound rules are meant for outbound traffic. Otherwise, everything else is similar. Associating the NSG Once you have the NSG created, you can associate it to either an NIC or a subnet. Associating the NSG to an NIC To associate the NSG to an NIC, you need to follow these steps: Navigate to the Network security groups that you have created and then select Network interfaces, as shown in the following screenshot: Figure 2.16: Associated NICs to an NSG Click on Associate. A new blade will pop up, from which you need to select the NIC that you want to associate with the NSG, as shown in the following screenshot: Figure 2.17: NICs to be associated to the NSG Voila! You are done. Associating the NSG to a subnet To associate the NSG to a subnet, you need to follow these steps: Navigate to the Network security groups that you have created and then select Subnets, as shown in the following screenshot: Figure 2.18: Associated subnets to an NSG Click on Associate. A new blade will pop up, where you have to specify the virtual network within which the subnet exists, as shown in the following screenshot: Figure 2.19: Choosing the VNet within which the subnet exists Then, you need to specify which subnet of the VNet you want to associate the NSG to, as shown in the following screenshot: Figure 2.20: Selecting the subnet to which the NSG will be associated Once the subnet is selected, click on OK, and it will take some seconds to get it associated to the NSG. Azure DDoS protection DDoS attacks have spread out lately, by exhausting the application and making it unavailable for use, and you can expect an attack of that type any time. Recently, Microsoft announced the support of Azure DDoS protection as a service for protecting Azure resources, such as Azure VMs, Load Balancers, and Application Gateways. Azure DDoS protection comes in two flavors: Basic: This type has been around for a while as it is already enabled for Azure services to mitigate DDoS attacks. It incurs no charges. Standard: This flavor comes with more enhancements that mitigate attacks, especially for Azure VNet. At the time of writing this book, Azure DDoS protection standard is in preview and it is not available at the portal. You need to request it by filling out a form that is available here. If you found this post useful, do check out the book Hands on Networking with Azure, to design and implement Azure Networking for Azure VMs. Read More The Microsoft Azure Stack Architecture What is Azure API Management?last_img read more